
The Smart Controller – shifting performance boundaries
Angelo Fraietta

PO Box 859, Hamilton NSW, 2303
email: angelo_f@bigpond.com

Abstract
Many composers today are using control voltage

to MIDI converters and laptop computers running
algorithmic composition software to create
interactive instruments and responsive environments.
Using an integrated device that combines the two
devices at the performance would reduce latency,
improve system stability, and reduce setup
complexity. Composers and performers, however,
have chosen not to use an integrated device due the
boundaries imposed upon them by the available
devices.

Users were forced to program their patches using
assembler. Secondly, it was difficult for users to
upgrade the firmware inside their device. Users were
also unable to build and modify the firmware in the
way MAX users were able to create new types of
objects.

This paper examines these issues and explains
how the Smart Controller overcame these
boundaries. Additionally, examples are given where
composers are now using the Smart Controller in
their works in preference to laptop computers.

1 Introduction
Many composers today are using algorithmic

compositional techniques that map certain physical
and conceptual gestures to musical parameters
(Doornbusch 2002). Gesture based interactive
instruments and responsive environments (Paine
2001) are often developed using MIDI controllers—
such as the ICube, SensorLab, and MIBURI MIDI
jump suit – using these as inputs to laptop computers
running algorithmic compositional and performance
software (Mustard 2002).

There can, however, be problems encountered
using a laptop computer at the actual performance
venue. These problems include latency, complexity in
cabling and setup, system stability, and excessive
wear-and-tear on expensive computer equipment
(Kartadinata 2002). In many cases, the performance
does not require a sophisticated graphical
environment; rather, the laptop merely executes the
required algorithm for the performance. In such a
situation, an integrated device that combines the
control voltage and MIDI input and output (hereafter
I/O), as well as running the algorithm itself, into a
single unit is preferable because it would solve many
of the problems stated.

There have, however, been restrictions placed
upon composers, performers, and hardware
developers when considering an integrated device.

Firstly, users have been forced to program their
patches for these devices using assembler or another
text based language. Secondly, the software became
static within the device. The firmware was locked
into the hardware device, making it difficult for users
to upgrade the firmware. This in turn gave users a
feeling of limitation shortly after developing some
facility with the device (Riddell 2001). Furthermore,
users were unable to build and modify the firmware
due to licensing restrictions, the cost of real-time
operating systems (hereafter RTOS), and the
requirement for cross-compilers. Finally, the
hardware platform itself became a boundary, whereby
software developed originally for a Motorola system,
for example, would not be easily ported to another
chip type.

Most of these problems can be addressed and
solved by not only determining what resources are
required for the composer, performer and developer;
but also at what point in time the resource is required.

During development of the Smart Controller,
these issues were identified, addressed and
implemented in an open system. Additionally,
examples are given where composers are now using
the Smart Controller in their works in preference to
laptop computers.

2 Performance
There are integrated devices, such as the MIDI

Tool Box (Schiemer 1998; Bandt 2001), that
integrate control voltage and MIDI into a single unit.
This device has many advantages in performance
over a non-integrated system.

The first advantage is that the time between a
performer making a musical gesture and the time that
sound is generated is reduced significantly. This
statement is not significant until one considers that
the processing power of the microcontroller within
these integrated devices is miniscule when compared
to the processing power available in laptop computers
today (Ganssle 2002). The problem is twofold.

Firstly, in the non-integrated system, control
voltages are converted to MIDI before entering the
laptop computer. To perform the conversion from
control voltage to MIDI, the device sequentially
scans a number of inputs, compares the value with
the previously read value, generates a MIDI message
based upon that input, and then continues the
scanning process (Gayman 1988). To calculate the
amount of time taken from input to output, one must
add the time taken to read the input, the time taken to

calculate what MIDI message must be sent, and the
time taken to generate the entire MIDI message. This
value must then be multiplied by the number of
inputs the device has. For example, the Infusions
Systems I-Cube has maximum sampling rate of
250Hz when using only one input and generating a
MIDI control message. This amounts to a worst case
latency of four milliseconds. This latency increases to
over fifteen milliseconds when using all thirty-two
inputs (Infusion Systems 1998).

Next, the laptop computer must now read the
MIDI at its input, perform the required computation,
and generate the required output. Although laptop
computers have an enormous amount of processing
power, much of these resources are spent by
preemptive operating system that must service
devices such as displays, hard disks, communications
ports, and resident programs. Consequently, the
computing power made available to the algorithmic
performance program may not be scheduled
immediately, which in turn introduces latency
(Messick 1998). The resources serviced by the
operating system are often not required for the
performance. This is effectively a waste of processing
power. This problem showed itself when code
running on a 40MHz 386 computer, running the Real
Time Executive for Multiprocessor Systems
(hereafter RTEMS) RTOS, executed identical C
plus-plus code faster than a 1.133GHz Athlon
machine running Windows 2000 (Fraietta 2002).

The second advantage of the integrated setup is
system stability. Laptop computer systems rely on the
underlying computer operating system that can crash
or freeze at any moment. By comparison, the
embedded system can be made to boot immediately
into the appropriate algorithm, and then in the event
of a program malfunction, reboot the machine
(Murphy and Barr 2001). In many cases, a sound
installation may be required to run for days or weeks
(Coburn 2002). Many programs for PC or Macintosh
computers are designed to run for only a few hours at
a time, whereas some embedded devices are expected
to run for years before cycling power (Ganssle 2002).

The final advantage of the integrated device in a
performance situation is the physical constraints.
“Weight and size isn’t everything when it comes to
stage (or touring) fitness. The plastic casing and the
display on hinges sure don’t encourage one to drop
the PB [Power Book] from a table” (Kartadinata
2000). Furthermore, the multitude of cables required
in a setup considerably increases the complexity and
encroaches upon the performance space itself
(Kartadinata 2002). An integrated device can reduce
the number of cables required, and subsequently, the
number of connections required during performance
setup.

These points lead to the question as to why
composers and performers are not replacing their
laptop computers with integrated devices. The answer

is linked to the way composers are creating their
patches.

3 Graphical patch programming
The main disadvantage for composers using an

integrated device is the lack of a graphical
programming environment to create and run patches.
The learning curve for these devices can be too great
for many composers as they are required to program
in assembler or another structured text language (Burt
1999). Many musicians want to move quicker than
they are able to, which in many cases leaves the
composer dissatisfied with the result of their work
(Arveiller 1982). This is because there is an
enormous quantity of programming involved before
one can make any music (Burt 1999).

Graphical programming environments are not
limited to artists, but rather, have become a standard
inclusion within engineering circles (Douglass 2001,
1999; Mintchell 1999, 1998). The main advantage of
graphical representation is that the comprehension of
the structured algorithm, in many cases, can be more
easily facilitated than with text alone (Favreau et al.
1986). A large percentage of the brain is involved in
the processing of visual information, which is a large
motivation for visually or graphically representing
information (Tufte 2001).

This is the case today also with music software,
where people are moving to software packages that
use a graphical or iconic representation of the
algorithm (Burt 1999). The laptop computer has the
advantage over the embedded system in that it has the
processing power to run software packages with
graphical interfaces.

These music software packages, such as MAX,
Audio Mulch, PD, and Algorithmic Composer,
enable the composer to create their algorithms by
connecting iconic objects together within a graphical
environment. An object is joined to another object by
connecting an outlet from one object to the inlet of
another object (Puckette 1988), similar to the way
older analogue synthesisers used patch cables to
connect modules together (Pressing 1992). This
method of programming has become extremely
popular within the computer music community today;
consequently, more musicians are able to program
using MAX than are able to in C plus-plus (Rowe
2001).

Implementing a graphical programming
environment requires additional processing power – a
very limited commodity on embedded systems
(Ganssle 2002). This effectively means that the
algorithm composition must be performed on a
desktop or laptop computer. Although computer
aided software engineering tools enable one to
generate code using a graphical environment (Larman
2002), the resultant code does not allow one to run
the program using the icons that are used to generate
the code. One is therefore not able to manipulate their
patch within the graphical environment.

This problem can be solved when one considers
that composition and performance often take place at
different times and in different places. The graphical
interface is only required during composition,
therefore justifying the use of the laptop computer at
that point in time. During the performance, however,
the graphical interface is not required, thus making
way for the embedded device. Engineers using
programmable controllers have been moving toward
this paradigm since Modicon developed the first
programmable controller for General Motors in 1969
(Gayman 1988).

The Smart Controller solves this problem by
separating the graphical interface from the underlying
scheduling algorithm, known as the engine, using a
stack system based loosely on the ISO/OSI seven-
layer model (Lemieux 2000). The patch editor
contains the graphical interface and calls travel down
the stack to communicate with the underlying data
structures in the engine through the bottom layer. In
the case of the simulator, a single function to a shared
library using a pair of character buffers effects all
intercommunication. In the case of an embedded
hardware device, this lower layer is a
communications port or a MIDI data stream. The
source code for the engine in both the simulator and
the physical embedded device is identical, including
the scheduling algorithm, with the exception of
operating system primitives and hardware drivers.
This effectively enables the composer to program and
rehearse the algorithm almost completely using a
graphical interface. Additionally, the composer can
test the behaviour without ever having the embedded
hardware.

4 Flexibility and scalability
A perceived advantage of the laptop computer is

that software can be upgraded or modified quite
easily, which allows the software developer to revise
and post software updates using the Internet (Riddell
2001). This, however, is not an exclusive feature for
laptop systems. Embedded systems programmers
have overcome this by using flash memory and a
bootstrap loader that enables the device to download
a new binary executable from an I/O port and then
boot into the new code (Glass 1998). The Smart
Controller has implemented this feature, and
subsequently a user can download new executable
binaries for their hardware as the Smart Controller
system matures and grows in sophistication.

Another advantage with the laptop system is that
users in some cases are able to enhance the
algorithmic software in some way. For example,
MAX users can create and use their own object types
using MAX externals, which in turn enables users to
share the newly created objects with other users of
MAX – one of the features that helped make MAX so
popular today (Rowe 2001). This is not normally
possible with hardware devices because the whole of
the firmware must be re-compiled into a single

executable binary file. However, due to the recent
advent of the free software and open-source
movement (Gatliff 2000), particularly the use of
GNU compilers (Gatliff 2000) and RTEMS, the
Smart Controller has overcome this boundary also.

RTEMS is a free open-source RTOS that was
originally developed for the US Army, but was
released for non-military uses later (Sherrill 2003).
When asked why RTEMS was given away instead of
being sold, Mark Johannes of On-line Applications
Research (hereafter OAR) stated “It was a natural fit
to release RTEMS as open source to leverage the
environment that promotes the further development
and utilization of the product” (Johannes 2001). A
great advantage of using RTEMS in the Smart
Controller is that all the development tools are free,
the operating software is free, and there is free
support available also. The new Smart Controller
firmware can be built on a Windows, Linux, or OSX
machine at no cost to the developer (Norum 2003).
RTEMS has already been used as the operating
system in an assortment of projects ranging from
avionics and space research through to robotics and
system on chip audio players (Sherrill 2003; Azuara
and Kiatisevi 2002).

RTEMS runs on more than forty hardware
platforms (Sherrill 2003), and subsequently, the
Smart Controller as an embedded device could be
ported quite easily to other hardware platforms.

5 Uses in performance
The Smart Controller was first used in

performance at the University of Western Sydney in
September 2003 to perform Whirling Wheels - a
quadraphonic performance where three distinct
sounds appeared to rotate through four speakers
(Fraietta 2002). The piece was performed by
controlling a guitar shaped device that generated
control voltages. The Smart Controller performed an
algorithm that generated MIDI note and controller
messages, sending them to a Roland SY-99 FM
synthesizer. The impression of rotating around the
room was achieved my by sending note velocities and
pan control values at high speed to the SY-99.

Also, the Smart Controller is being used in a
sound installation where the public interact with
small metallic bells. The Smart Controller senses
changes in the environment, controls solenoids to
mechanically strike the bells, and schedules the
different phases within the performance (Norman
2003).

6 Conclusion
The Smart Controller enables composers to

generate patches from the comfort of their iBook or
PC workstation, while at the same time providing
efficient, effective, and reliable performance in
concert that is only obtainable through a purpose-
built embedded device. This has been achieved by
recognising what resources were required and at what

time. In the case of a week long installation,
composers do not have to leave their laptop
computers public places. Additionally, it enables
composers to use a graphical patching paradigm they
are already familiar with. Also, composers are able to
effectively compose, simulate, and run patches
separate from the hardware device using a Windows
or Macintosh OSX computer. The firmware can be
upgraded easily and can even be modified by
developers. Additionally, the software can be ported
to other hardware platforms should the need or desire
arise. Finally, the Smart Controller is successfully
being used by composers today.

7 Acknowledgments
I would like to thank first and foremost the

greatest artist and engineer – the creator of all things
seen and unseen – Jesus Christ. Many of the
concepts used in developing the Smart Controller
have been already used by Him in His creation.

Additionally, I would thank Joel Sherrill, Ralf
Corsepius, Eric Norum, and all the people in the
RTEMS community. Without their help and
dedication, the Smart Controller would never become
a reality.

Finally, I would like to thank Dr Jim Franklin for
his encouragement and the University of Western
Sydney for making the required funding available.

References
Arveiller, Jacques. 1982. "Comments on university instruction in

computer music composition." Computer Music Journal 6
(2):72-78.

Azuara, Luis, and Pattara Kiatisevi. 2002. Design of an audio
player as a system-on-a-chip. Masters thesis, Institute of
computer science, University of Stuttgart, Stuttgart.

Bandt, Ros. 2001. Sound sculpture : intersections in sound and
sculpture in Australian artworks. St. Leonards, N.S.W.:
Craftsman House.

Burt, Warren. "An Email Interview with Warren Burt." Interview
by Greg Schiemer. Chroma 25 (1999): 3-6.

Coburn, Robert. 2002. Composing space: the integration of music,
time, and space in multi-dimensional sound installations. In
proceedings of Form, space, time: the Australasian Computer
Music Conference. Royal Melbourne Institute of Technology.

Doornbusch, Paul. 2002. The application of mapping in
composition and design. In proceedings of Form, space, time:
the Australasian Computer Music Conference. Royal
Melbourne Institute of Technology.

Douglass, Bruce Powel. 1999. "UML statecharts." Embedded
Systems Programming 12 (1):22-42.

— — — . 2001. "Capturing real-time requirements." Embedded
Systems Programming 14 (12):18-30.

Favreau, Emmanuel, Michel Fingerhut, Olivier Koechlin, Patrick
Potacsek, Miller Puckette, and Robert Rowe. 1986. Software
developments for the 4X real-time system. In proceedings of
the International Computer Music Conference. Royal
Conservatory of Music, Den Haag, Netherlands.

Fraietta, Angelo. 2002. Smart Controller -- Artist Talk. In
proceedings of Form, space, time: the Australasian Computer
Music Conference. Royal Melbourne Institute of Technology.

— — — . 2002. Whirling Wheels. Sydney: Angelo Fraietta.
Ganssle, Jack G. 2002. "Breaking into embedded." Embedded

Systems Programming 15 (9):43-46.
Gatliff, Bill. 2000. "Embedding with GNU: the GNU compiler and

linker." Embedded Systems Programming 13 (2):66-78.

— — — . 2000. "Open source is already delivering." Embedded
Systems Programming 13 (10):88-93.

Gayman, David J. 1988. "An old favorite gets new standards."
Manufacturing Engineering 100 (1):55-59.

Glass, Brett. 1998. "There in a Flash: Flash Memory for Embedded
Systems." Embedded Systems Programming 11 (1):81-88.

Infusion Systems. 1998. I-Cube System Manual. Last accessed 5
March 2003.
http://www.infusionsystems.com/support/icubex-111-
manual.pdf.

Johannes, Mark. 2001. Email to A. Fraietta, Re: History of
RTEMS, 7 March 2001.

Kartadinata, Sukandar. 2000. hardMax. Last accessed 23 October
2000. http://members.xoom.com/Sukandar/hardMAX.html.

— — — . 2002. The Gluiph -a platform for integrated electronic
musical instruments. Last accessed 18 February 2003.
http://www.glui.de/proj/gluiph.html.

Larman, Craig. 2002. Applying UML and patterns: an introduction
to object-oriented analysis and design and the unified
process. 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR.

Lemieux, Joseph. 2000. "The OSEK/VDXStandard: Operating
System and Communication." Embedded Systems
Programming 13 (3):90-108.

Messick, Paul. 1998. Maximum MIDI : music applications in C++.
Greenwich: Manning.

Mintchell, Gary A. 1998. "PCs power programming tools." Control
Engineering 45 (12):42-50.

— — — . 1999. "Graphic interfaces are programmer's friends."
Control Engineering 46 (11):57-65.

Murphy, Niall, and Michael Barr. 2001. "Watchdog timers."
Embedded Systems Programming 14 (11):79-80.

Mustard, Johnathan. 2002. Correlating movement in space to the
parameters of sound. In proceedings of Form, space, time:
the Australasian Computer Music Conference. Royal
Melbourne Institute of Technology.

Norman, Anne. 2003. Power Pole Bells. Anne Norman. Last
accessed 12 March 2003.
http://home.vicnet.net.au/~amncrow/PPBells.html.

Norum, W. Eric. 2003. Getting started with EPICS on RTEMS.
Last accessed 26 February 2003.
http://www.aps.anl.gov/epics/modules/base/RTEMS/tutorial/t
utorial.html.

Paine, Garth. 2001. Interactive sound works in public exhibition
spaces: an artists perspective. In proceedings of Waveform
2001: the Australasian Computer Music Conference.
University of Western Sydney.

Pressing, Jeff. 1992. Synthesizer performance and real-time
techniques. Madison, Wis.: A-R Editions.

Puckette, Miller. 1988. The Patcher. In proceedings of the
International Computer Music Conference. GMIMIK,
Kologne, Germany.

Riddell, Alistair. 2001. Email to A. C. M. A. m. l. acma-
l@list.waikato.ac.nz, Re: acma-l Midi Controllers, 10
October 2001.

Rowe, Robert. 2001. Machine musicianship. Cambridge, Mass. ;
London: MIT Press.

Schiemer, Gregory. 1998. MIDI Tool Box an interactive system for
music composition. Ph.D. diss., Macquarie University,
Sydney.

Sherrill, Joel. 2003. Email to A. Fraietta, History of RTEMS, 7
March 2001.

— — — . 2003. RTEMS Applications. Last accessed 4 March 2003.
http://www.oarcorp.com/~joel/rtems/apps.html.

— — — . 2003. RTEMS Ports and BSPs. On-line Applications
Research. Last accessed 28 February 2003.
http://www.oarcorp.com/RTEMS/Features/Ports___BSPs/por
ts___bsps.html.

Tufte, Edward R. 2001. The visual display of quantitative
information. 2nd ed. ed. Cheshire, Conn.: Graphics Press.

