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Abstract 
Many composers today are using control voltage 

to MIDI converters and laptop computers running 
algorithmic composition software to create 
interactive instruments and responsive environments. 
Using an integrated device that combines the two 
devices at the performance would reduce latency, 
improve system stability, and reduce setup 
complexity. Composers and performers, however, 
have chosen not to use an integrated device due the 
boundaries imposed upon them by the available 
devices.  

Users were forced to program their patches using 
assembler. Secondly, it was difficult for users to 
upgrade the firmware inside their device. Users were 
also unable to build and modify the firmware in the 
way MAX users were able to create new types of 
objects.  

This paper examines these issues and explains 
how the Smart Controller overcame these 
boundaries. Additionally, examples are given where 
composers are now using the Smart Controller in 
their works in preference to laptop computers. 

1 Introduction 
Many composers today are using algorithmic 

compositional techniques that map certain physical 
and conceptual gestures to musical parameters 
(Doornbusch 2002). Gesture based interactive 
instruments and responsive environments (Paine 
2001) are often developed using MIDI controllers—
such as the ICube, SensorLab, and MIBURI MIDI 
jump suit – using these as inputs to laptop computers 
running algorithmic compositional and performance 
software (Mustard 2002).  

There can, however, be problems encountered 
using a laptop computer at the actual performance 
venue. These problems include latency, complexity in 
cabling and setup, system stability, and excessive 
wear-and-tear on expensive computer equipment 
(Kartadinata 2002). In many cases, the performance 
does not require a sophisticated graphical 
environment; rather, the laptop merely executes the 
required algorithm for the performance.  In such a 
situation, an integrated device that combines the 
control voltage and MIDI input and output (hereafter 
I/O), as well as running the algorithm itself, into a 
single unit is preferable because it would solve many 
of the problems stated. 

There have, however, been restrictions placed 
upon composers, performers, and hardware 
developers when considering an integrated device.  

Firstly, users have been forced to program their 
patches for these devices using assembler or another 
text based language. Secondly, the software became 
static within the device. The firmware was locked 
into the hardware device, making it difficult for users 
to upgrade the firmware. This in turn gave users a 
feeling of limitation shortly after developing some 
facility with the device (Riddell 2001). Furthermore, 
users were unable to build and modify the firmware 
due to licensing restrictions, the cost of real-time 
operating systems (hereafter RTOS), and the 
requirement for cross-compilers. Finally, the 
hardware platform itself became a boundary, whereby 
software developed originally for a Motorola system, 
for example, would not be easily ported to another 
chip type. 

Most of these problems can be addressed and 
solved by not only determining what resources are 
required for the composer, performer and developer; 
but also at what point in time the resource is required. 

During development of the Smart Controller, 
these issues were identified, addressed and 
implemented in an open system. Additionally, 
examples are given where composers are now using 
the Smart Controller in their works in preference to 
laptop computers. 

 

2 Performance 
There are integrated devices, such as the MIDI 

Tool Box (Schiemer 1998; Bandt 2001), that 
integrate control voltage and MIDI into a single unit. 
This device has many advantages in performance 
over a non-integrated system.  

The first advantage is that the time between a 
performer making a musical gesture and the time that 
sound is generated is reduced significantly. This 
statement is not significant until one considers that 
the processing power of the microcontroller within 
these integrated devices is miniscule when compared 
to the processing power available in laptop computers 
today (Ganssle 2002). The problem is twofold.  

Firstly, in the non-integrated system, control 
voltages are converted to MIDI before entering the 
laptop computer. To perform the conversion from 
control voltage to MIDI, the device sequentially 
scans a number of inputs, compares the value with 
the previously read value, generates a MIDI message 
based upon that input, and then continues the 
scanning process (Gayman 1988). To calculate the 
amount of time taken from input to output, one must 
add the time taken to read the input, the time taken to 



calculate what MIDI message must be sent, and the 
time taken to generate the entire MIDI message.  This 
value must then be multiplied by the number of 
inputs the device has. For example, the Infusions 
Systems I-Cube has maximum sampling rate of 
250Hz when using only one input and generating a 
MIDI control message. This amounts to a worst case 
latency of four milliseconds. This latency increases to 
over fifteen milliseconds when using all thirty-two 
inputs (Infusion Systems 1998).   

Next, the laptop computer must now read the 
MIDI at its input, perform the required computation, 
and generate the required output. Although laptop 
computers have an enormous amount of processing 
power, much of these resources are spent by 
preemptive operating system that must service 
devices such as displays, hard disks, communications 
ports, and resident programs. Consequently,   the 
computing power made available to the algorithmic 
performance program may not be scheduled 
immediately, which in turn introduces latency 
(Messick 1998). The resources serviced by the 
operating system are often not required for the 
performance. This is effectively a waste of processing 
power. This problem showed itself when code 
running on a 40MHz 386 computer, running the  Real 
Time Executive for Multiprocessor Systems 
(hereafter RTEMS) RTOS,  executed identical C 
plus-plus code faster than a 1.133GHz Athlon 
machine running Windows 2000 (Fraietta 2002). 

The second advantage of the integrated setup is 
system stability. Laptop computer systems rely on the 
underlying computer operating system that can crash 
or freeze at any moment. By comparison, the 
embedded system can be made to boot immediately 
into the appropriate algorithm, and then in the event 
of a program malfunction, reboot the machine 
(Murphy and Barr 2001). In many cases, a sound 
installation may be required to run for days or weeks 
(Coburn 2002). Many programs for PC or Macintosh 
computers are designed to run for only a few hours at 
a time, whereas some embedded devices are expected 
to run for years before cycling power (Ganssle 2002).   

The final advantage of the integrated device in a 
performance situation is the physical constraints. 
“Weight and size isn’t everything when it comes to 
stage (or touring) fitness. The plastic casing and the 
display on hinges sure don’t encourage one to drop 
the PB [Power Book] from a table” (Kartadinata 
2000). Furthermore,  the multitude of cables required 
in a setup considerably increases the complexity and 
encroaches upon the performance space itself 
(Kartadinata 2002). An integrated device can reduce 
the number of cables required, and subsequently, the 
number of connections required during performance 
setup. 

These points lead to the question as to why 
composers and performers are not replacing their 
laptop computers with integrated devices. The answer 

is linked to the way composers are creating their 
patches. 

3 Graphical patch programming 
The main disadvantage for composers using an 

integrated device is the lack of a graphical 
programming environment to create and run patches. 
The learning curve for these devices can be too great 
for many composers as they are required to program 
in assembler or another structured text language (Burt 
1999).  Many musicians want to move quicker than 
they are able to, which in many cases leaves the 
composer dissatisfied with the result of their work 
(Arveiller 1982). This is because there is an 
enormous quantity of programming involved before 
one can make any music (Burt 1999). 

Graphical programming environments are not 
limited to artists, but rather, have become a standard 
inclusion within engineering circles (Douglass 2001, 
1999; Mintchell 1999, 1998). The main advantage of 
graphical representation is that the comprehension of 
the structured algorithm, in many cases, can be more 
easily facilitated than with text alone (Favreau et al. 
1986). A large percentage of the brain is involved in 
the processing of visual information, which is a large 
motivation for visually or graphically representing 
information (Tufte 2001). 

This is the case today also with music software, 
where people are moving to software packages that 
use a graphical or iconic representation of the 
algorithm (Burt 1999). The laptop computer has the 
advantage over the embedded system in that it has the 
processing power to run software packages with 
graphical interfaces. 

These music software packages, such as MAX, 
Audio Mulch, PD, and Algorithmic Composer, 
enable the composer to create their algorithms by 
connecting iconic objects together within a graphical 
environment.  An object is joined to another object by 
connecting an outlet from one object to the inlet of 
another object (Puckette 1988), similar to the way 
older analogue synthesisers used patch cables to 
connect modules together (Pressing 1992). This 
method of programming has become extremely 
popular within the computer music community today; 
consequently, more musicians are able to program 
using MAX than are able to in C plus-plus (Rowe 
2001).   

Implementing a graphical programming 
environment requires additional processing power – a 
very limited commodity on embedded systems 
(Ganssle 2002). This effectively means that the 
algorithm composition must be performed on a 
desktop or laptop computer. Although computer 
aided software engineering tools enable one to 
generate code using a graphical environment (Larman 
2002), the resultant code does not allow one to run 
the program using the icons that are used to generate 
the code. One is therefore not able to manipulate their 
patch within the graphical environment. 



This problem can be solved when one considers 
that composition and performance often take place at 
different times and in different places. The graphical 
interface is only required during composition, 
therefore justifying the use of the laptop computer at 
that point in time. During the performance, however, 
the graphical interface is not required, thus making 
way for the embedded device. Engineers using 
programmable controllers have been moving toward 
this paradigm since Modicon developed the first 
programmable controller for General Motors in 1969 
(Gayman 1988). 

The Smart Controller solves this problem by 
separating the graphical interface from the underlying 
scheduling algorithm, known as the engine, using a 
stack system based loosely on the ISO/OSI seven-
layer model (Lemieux 2000). The patch editor 
contains the graphical interface and calls travel down 
the stack to communicate with the underlying data 
structures in the engine through the bottom layer. In 
the case of the simulator, a single function to a shared 
library using a pair of character buffers effects all 
intercommunication. In the case of an embedded 
hardware device, this lower layer is a 
communications port or a MIDI data stream. The 
source code for the engine in both the simulator and 
the physical embedded device is identical, including 
the scheduling algorithm, with the exception of 
operating system primitives and hardware drivers. 
This effectively enables the composer to program and 
rehearse the algorithm almost completely using a 
graphical interface. Additionally, the composer can 
test the behaviour without ever having the embedded 
hardware.  

4 Flexibility and scalability 
A perceived advantage of the laptop computer is 

that software can be upgraded or modified quite 
easily, which allows the software developer to revise 
and post software updates using the Internet (Riddell 
2001). This, however, is not an exclusive feature for 
laptop systems. Embedded systems programmers 
have overcome this by using flash memory and a 
bootstrap loader that enables the device to download 
a new binary executable from an I/O port and then 
boot into the new code (Glass 1998).  The Smart 
Controller has implemented this feature, and 
subsequently a user can download new executable 
binaries for their hardware as the Smart Controller 
system matures and grows in sophistication. 

Another advantage with the laptop system is that 
users in some cases are able to enhance the 
algorithmic software in some way. For example, 
MAX users can create and use their own object types 
using MAX externals, which in turn  enables users to 
share the newly created objects with other users of 
MAX – one of the features that helped make MAX so 
popular today (Rowe 2001). This is not normally 
possible with hardware devices because the whole of 
the firmware must be re-compiled into a single 

executable binary file. However, due to the recent 
advent of the free software and open-source 
movement (Gatliff 2000), particularly the use of 
GNU compilers (Gatliff 2000) and RTEMS, the 
Smart Controller has overcome this boundary also.  

RTEMS is a free open-source RTOS that was 
originally developed for the US Army, but was 
released for non-military uses later (Sherrill 2003). 
When asked why RTEMS was given away instead of 
being sold, Mark Johannes of On-line Applications 
Research (hereafter OAR) stated “It was a natural fit 
to release RTEMS as open source to leverage the 
environment that promotes the further development 
and utilization of the product” (Johannes 2001). A 
great advantage of using RTEMS in the Smart 
Controller is that all the development tools are free, 
the operating software is free, and there is free 
support available also. The new Smart Controller 
firmware can be built on a Windows, Linux, or OSX 
machine at no cost to the developer (Norum 2003). 
RTEMS has already been used as the operating 
system in an assortment of projects ranging from 
avionics and space research through to robotics and 
system on chip audio players (Sherrill 2003; Azuara 
and Kiatisevi 2002).  

RTEMS runs on more than forty hardware 
platforms (Sherrill 2003), and subsequently, the 
Smart Controller as an embedded device could be 
ported quite easily to other hardware platforms.  

5 Uses in performance 
The Smart Controller was first used in 

performance at the University of Western Sydney in 
September 2003 to perform Whirling Wheels - a 
quadraphonic performance where three distinct 
sounds appeared to rotate through four speakers 
(Fraietta 2002). The piece was performed by 
controlling a guitar shaped device that generated 
control voltages. The Smart Controller performed an 
algorithm that generated MIDI note and controller 
messages, sending them to a Roland SY-99 FM 
synthesizer.  The impression of rotating around the 
room was achieved my by sending note velocities and 
pan control values at high speed to the SY-99. 

Also, the Smart Controller is being used in a 
sound installation where the public interact with 
small metallic bells. The Smart Controller senses 
changes in the environment, controls solenoids to 
mechanically strike the bells, and schedules the 
different phases within the performance (Norman 
2003).  

6 Conclusion 
The Smart Controller enables composers to 

generate patches from the comfort of their iBook or 
PC workstation, while at the same time providing 
efficient, effective, and reliable performance in 
concert that is only obtainable through a purpose-
built embedded device. This has been achieved by 
recognising what resources were required and at what 



time. In the case of a week long installation, 
composers do not have to leave their laptop 
computers public places. Additionally, it enables 
composers to use a graphical patching paradigm they 
are already familiar with. Also, composers are able to 
effectively compose, simulate, and run patches 
separate from the hardware device using a Windows 
or Macintosh OSX computer. The firmware can be 
upgraded easily and can even be modified by 
developers. Additionally, the software can be ported 
to other hardware platforms should the need or desire 
arise.  Finally, the Smart Controller is successfully 
being used by composers today. 
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