
36

Incremental sound installation development using the Smart
Controller

Angelo Fraietta

PO Box 859, Hamilton NSW, 2303
email: angelo_f@bigpond.com

Abstract
The Smart Controller is a powerful integrated device
that integrates control voltage, MIDI, and
algorithmic generation into a single hardware device,
which in turn eliminates the requirement of a laptop
computer at a performance or sound installation. The
device is programmed using a graphical iconic
environment using a Windows or Macintosh OSX
computer.
This paper will explain how the Smart Controller was
implemented in Anne Norman’s Garden Bells
installation, where the Smart Controller played bells
by actuating solenoids in response to scheduled MIDI
sequences and environmental events. This paper will
detail how the Smart Controller patches were
incrementally and iteratively developed in order to
allow the composer to effectively develop the
remaining hardware portion of the installation.

1 Introduction
The author was approached by composer Anne

Norman with the proposition of assisting her with the
realisation of an electro-acoustic Bell Garden
installation (Norman 2003a). The sound installation
is based around a collection of galvanised iron caps
that were once fixed to the tops of power poles. Apart
from the original engineering use, the caps also
function quite well as microtonal bells, and
subsequently, have been used in musical
performances and recordings (Norman 2003b). The
composer decided to create an interactive
environment that responds to both motion and
percussion. Furthermore, the behaviour of the Bell
Garden changes through time, whereby each
performance phase of the Bell Garden was
significantly different. The composer provided the
following performance details:

This multifunction Bell forest can be performed:

(1) with beaters acoustically

(2) with subtle amplification of acoustic sound

(3) with electronic effect modulation of acoustic
sound

(4) through movement detectors triggering an
auto striking mechanism

(5) through movement detectors triggering
MIDI samples of unexpected sounds and voices
(Norman 2003a)

The author’s responsibilities in this project would
be to design a processor to schedule the interactive
component of the installation, and to provide
technical advice to the composer. After examining
the composer’s brief outline of the installation, the
author suspected that the scheduled functions
required for the installation were: (1) responding to
audience movement, (2) generation of electrical
signals to trigger a mechanical striking of the bells,
and (3) sample playback. The author suggested that
the Smart Controller would be able to perform the
scheduling and triggering aspects of the performance,
and subsequently, the composer chose to use the
Smart Controller.

The primary concern in this collaboration
was distance – the author was in Newcastle NSW
while the composer was in Mornington Victoria. The
second concern perceived was that the composer
owned a Macintosh and there was no Smart
Controller patch editor available for that platform. As
the project developed, however, other complications
became evident. The area of particular concern was
the composer’s lack of technical knowledge, which
was quite understandable as this was her first
installation.

Consequently, this led to communications
deficiencies between the author and the composer,
whereby each person falsely believed that the other
party understood the logistics and their own area of
responsibility within the project. As communications
progressed, both parties realised the magnitude of the
project was completely underestimated in terms of
cost, complexity, and effort. Nevertheless, although
the installation was not complete at the time of
writing, the author has the full confidence in the
success of the installation due to an iterative approach
to development (MacCormack 2001).

37

This paper details how the author was able to map
the composer’s artistic concepts to technical
specifications, and finally, to schematic diagrams and
Smart Controller patches through iterative and
incremental design strategies.

2 Requirements
During the development of any software or

hardware project, a set of requirements is defined at
the commencement. When using the waterfall
lifecycle method of system development, the entire
system is designed and documented before
performing any implementation (Royce 1970). The
problem with this metaphor is there is no active
attempt to identify risk. Risks come in many forms,
which include the use of an incorrect set of
requirements, and a lack of skills or resources
(Larman 2002).1

By contrast, the Unified Process (Jacobson,
Booch, and Rumbaugh 1999) uses a practice called
“iterative development” (Larman 2002), whereby the
development is organised into short sub-projects
called “iterations” (Larman 2002). Each iteration is a
standalone executable system that can be tested by
itself apart from the main project to which it belongs.
One of the main advantages of this approach is that it
is based upon the premise that not everything is
known upfront (MacCormack 2001), this giving the
designer the freedom to redirect development as a
result of the preceding test. This approach appeared
best in the situation as both the composer and author
were unaware of the complete design at the outset. 2

The composer provided a set of input and output
requirements whereby the author constructed
requirements tables 1 and 2 in order to make mapping
simpler (Petty 1998).

Additionally, the composer provided a phase
outline that described each phase of operation. The
phases included playing the bells using MIDI
sequences, bells being played as a response to
movement near the bell, modification of electronic
effects settings, samples being triggered in response
to the bells being struck, and playback of pre-recoded
music from compact disk. The information was
limited because the composer did not have any

1 The waterfall process is similar to the engineering
approach used to construct bridges and buildings. The
blueprints are completed before any construction
takes place. The use of this approach made software
development appear more structured and robust --
similar to other engineering fields.

2 A two year study in successful software projects
(MacCormack 2001) revealed that the highest
common factor in successful projects was the use of
iterative development rather than the waterfall
lifecycle.

sequences composed, did not know what type of
effects unit to use, and did not have the MIDI
sampler.

Although the complete implementation details
were far from complete, there was enough
information to start patch development.

Inputs
Quantity Type Purpose Implementation
10 Microphone Collect

audio for
modifica-
tion by
effects unit

Plug directly
into effects unit.
Also used to
trigger MIDI
samples.

10 Infrared
diodes

Monitor
movement

An infrared light
source would
normally be on
the diodes.
Moving in front
of the diode
would cause a
break in the light
source, causing
the diode to
become high
impedance. The
diodes could be
plugged directly
into digital
inputs of Smart
Controller.

Table 1 Input Requirements
Outputs

Quantity Type Purpose Implementation
10 Solenoid Mechanically

strike bells
Use digital
outputs from
Smart Controller
to trigger
solenoids.

3 Light Display
messages

Use digital
outputs to enable
message display.

3 or 4 Sound
effect
setting

Modify
audio
collected
through
microphone

Use MIDI
program change
message to
select
appropriate
sound effect
setting

26 Audio
samples

Playback
through
speakers

Use MIDI note
messages on a
MIDI sampler

Table 2 Output Requirements

3 Iteration one
The target of the first iteration was to provide the

composer with a Smart Controller unit with patches
that would load as soon as the device was powered
on. The ability to install new patches installed on the
device was possible using a MIDI system exclusive
data stream, whereby the new patch would be sent
through the MIDI port on the composer’s Macintosh.

38

Additionally, the Smart Controller firmware could be
upgraded through the MIDI port, thus making it
unnecessary to return the Smart Controller unit for
firmware upgrades.

The functionality of the patches provided in the
first iteration would be twofold. Firstly, the Smart
Controller would be able to respond to the movement
sensors and generate a pulse on the appropriate
output. This would allow the composer to create input
sensors and test the operation of the solenoid strikers.
Secondly, the Smart Controller would respond to
MIDI note messages and generate a pulse on the
appropriate bell striker output. This would enable the
composer to compose the MIDI sequences required
by using the Smart Controller as the bell driver. The
composer could use the existing sequencing software
on her Macintosh and plug the MIDI output into the

Smart Controller. As the sequencer produced the
MIDI, the Smart Controller would simply convert
them to the appropriate outputs to drive the solenoids.

In order to test both the movement sensors and the
solenoid strikers, the digital inputs of the Smart
Controller were mapped to the digital outputs.
Shorting a digital input would pulse the
corresponding digital output for a defined period.
Additionally, the pulse had to be prevented from
being re-triggered while the output pulse was being
generated. The composer was unsure of the actuation
period required by the solenoid. A pulse duration that
was too small would be insufficient to make the
solenoid strike the bell, while an excessive duration
would dampen the bell. Considering that neither the
author nor the composer were able to ascertain what
the required duration was, an upper limit of 250

Figure 1 Digital input mapped to solenoid strikers

39

milliseconds was stated. The duration would be
modified within the patch by sending and adjusting a
control voltage, which could be effected by using a
single potentiometer on an analogue input. The
digital value of the analogue input, which ranges
from 0 to 255, would be used to directly determine
the pulse duration. In order to produce the same
function for all ten inputs, the method to generate the
pulse was contained in a separate patch, and
subsequently included ten times in the outer patch.
The resultant patch and all the sub patches are
displayed in figure 1.

Next, MIDI input was mapped so as to produce a
bell striker output based upon the note number input.
This was effected using a calculation of modulo 12,
and then adding 1 to the result. Subsequently, all “C”
notes generated a pulse on output 1, “C#” on output
2, and so on up to “A.” The notes were sent to the
same patch as the digital inputs, and therefore
produced an identical output duration that would not
be retriggered before the required time had elapsed.
These new objects were added to the patch in figure
1, resulting in the patch displayed in figure 2.

After testing the patches operated correctly within
the simulator, they were loaded into the device and
configured to load immediately on power up. The
patches were tested by plugging light emitting diodes
(hereafter LED) into the digital outputs and shorting
the digital inputs one at a time, ensuring that the
correct LED flashed. Additionally, a potentiometer
was placed on the analogue input and manipulated to
ensure that the flash rate was adjustable via the
analogue input. Next, a MIDI keyboard was plugged
into the input and played, ensuring that the correct
LED flashed, depending on the note number. The
composer would be able to test the movement sensors
by plugging them directly into the digital inputs and
monitoring LEDs placed on the appropriate outputs.
Also, the solenoid strikers could be tested by
connecting them to the digital outputs, connecting a
MIDI keyboard to the input, and ensuring that a
played note produced the appropriate output.

The Smart Controller was shipped to the
composer, and patches contained within MIDI system
exclusive messages were sent via email. The first step
was to confirm that the composer would be able to
download newer patches from her Macintosh running
OS9.2. The composer was unable to import the data
file into a MIDI file through her sequencer, and
subsequently found a software package that could
send the raw midi data successfully. The composer
was unable to continue development with the device
for one month due to other commitments. The
composer indicated a very positive willingness to
upgrade the software on her Macintosh to OSX, and
subsequently, this break gave the author sufficient
time and motivation to develop the Macintosh patch
editor. The first version was complete by the time the
composer resumed work on the installation.

On resumption of work, the composer
commenced development of the sensors, using the
Smart Controller to test them. The composer had an
intermittent problem, whereby the Smart Controller
appeared to fail after a short period of time.

The Smart Controller facilitates the use of a
detachable plug, as displayed in figure 3, whereby a
loom can be soldered to the plug and attached easily
during setup. This enables all the inputs to be
attached using a single plug connection during the
setup of a performance. The same mechanism is also
provided for the outputs. This enables the Smart
Controller to be easily removed and used in different
sound installations. The composer had created input
and output looms by soldering to the detachable
plugs. A LED was soldered to the output, and the
device was tested by shorting the digital input,
adjusting the potentiometer for the flash duration, and
monitoring the LED.

Figure 2 MIDI input added to digital input
mapping

Figure 3 Smart Controller I/O plug

40

Input and output sensors can be connected
directly into the Smart Controller inputs without the
detachable plug, as displayed in figure 4, allowing
users to plug three pin sensors, identical to the
Infusion Systems I-Cube sensors (Infusion Systems
1998), directly into the device. The author directed
the composer to remove the plugs and insert a
potentiometer and LED directly into the Smart
Controller inputs and outputs respectively, and to use
a wire to short the digital inputs directly. The
composer confirmed that device was working
correctly and that the problem was probably due to
unsatisfactory soldering to the detachable plugs.

Next, the composer stated that the physical layout
of the Smart Controller was extremely difficult to
work with in this particular installation.
Consequently, the author will be installing the Smart

Controller into a standard rack mount unit, which will
be provided by the composer.

4 Iteration two
At this point, the composer was unable to

continue on the project implementation for another
five weeks due to other commitments; however, the
composer provided ideas and directions to the author
in regard to the composition of the work, allowing the
author to continue developing patches for the Smart
Controller.

The composer’s current area of focus is the
physical layout of installation. The author was
concerned with noise induced into the microphones
leads due to the distance they would be required to
travel alongside other signals. Additionally, plugging
the microphones directly into the Smart Controller
analogue inputs would cause the input to become
unbalanced. This was a concern because the
composer also intended to amplify the bells through
these same microphones. One possibility to overcome
this would be to provide a set of low cost transducers
to provide audio triggers to the Smart Controller.
Alternatively, an operational amplifier could be used
at the microphone source to provide isolation
between the audio and the triggering circuits. The
composer, however, decided to remove the
requirement for audio triggering samples, and
subsequently, this patch will be no longer required.
This phase will be replaced by a separate set of
samples being triggered by the movement sensors,
and subsequently a new patch will need to be written.

Figure 4 Three pin sensor attachment with
LED on output

Figure 5 Smart Controller to bell stand logical connection

41

Another concern with regard to the physical
layout was the number of cables that needed to be run
and the complexity of the loom required to interface
between the Smart Controller and the bell stands.
Each bell stand required at least four wires that are
mapped to the Smart Controller.

Figure 5 displays one of ten bell stand to Smart
Controller connection maps. The microphone trigger
(M1) is mapped to the analogue input; the infrared
sensor (D1) is mapped to the digital input; the
solenoid bell striker (S1) is mapped to the digital
output; and the common is mapped to the Smart
Controller earth. A loom to connect the two
detachable Smart Controller plugs, displayed in
figure 3, to all the bell stands would require at least
forty solder joints. In order to reduce the number of
solder connections required by the composer, it was
decided that the rack mount unit would interface
directly with the bell stands. The Smart Controller
inputs and outputs could be mapped to the bell stands
inside the rack mount unit, providing a single DB9
plug interface for every two bell stands. The
composer can then use IDC plugs and ribbon cable
without having to perform any soldering. The bell
stands can be grouped together using physically
adjacent pins instead of logical pin numbers, allowing
a standard 16-way IDC ribbon cable to be split to
create two cables. Then, at the bell stand location, the
cable can be physically split in two again, creating
two cable runs without requiring a solder connection.
Figure 6 displays the arrangement as a schematic
diagram.

The bell stands will still require a heavier gauge
pair for the 12V solenoid supply and the speakers,
and a shielded pair for microphone; however, the
responsibility for this is left to the composer.

5 Iteration three
The third iteration in the bell garden will be the

programming of the scheduling and the MIDI
messages for the sampler and effects unit. Although
the patch editor can now be run on the composer’s
Macintosh, the composer has never used software
such as MAX, and subsequently, is unfamiliar with
that programming paradigm. This effectively means
that the author will perform all the programming.
This will require the author to write the patch, email
it to the composer, who will download it to the unit to
determine its suitability, and then provide feedback as
to what is unsatisfactory. This cycle will continue for
each phase required for the installation.

The information required for the sampler will be
the mapping of required note numbers to events
(Doornbusch 2002). This could be communicated
through the use of a table that maps triggered inputs
to note numbers. Alternatively, a statement such as
“digital inputs 1 to 10 will generate MIDI note
number 60 with a velocity of 127; the MIDI channel
being the same as the input channel.” If digital input
5 was detected, the Smart Controller would produce
MIDI note number 60, velocity 127 on MIDI channel
5. Alternatively, one could state “digital inputs 1 to
10 will generate MIDI notes with a velocity of 127 on

Figure 6 Connection of Smart Controller to bell stands using IDC ribbon

42

MIDI channel 1, ranging from 60 to 69 respectively.”
In this example, if digital input 5 was detected, the
Smart Controller would generate MIDI note number
64, velocity 127 on MIDI channel 1.

The information required for the effects could be
the program change number for a particular phase.
For example “switching to manual play phase 2
requires that MIDI program change 12 be sent on
MIDI channel 1.” Moving to this phase would cause
the Smart Controller to generate the required program
change message when entering that stage. The
author, however, will be unable to write the patches
until this information is provided by the composer.

The composer could simulate these events by
creating a MIDI sequence using a standard
sequencing software package, and programming the
required events at this stage. Logically, it is possible
for the entire phase scheduling to be implemented
using a MIDI sequence. The composer could then use
the sequencing software that she is familiar with to
simulate the performances by plugging the output of
the sequencer into the Smart Controller. Although
this is similar to the method suggested for creating
melodic sequences, it is different because the Smart
Controller would respond to MIDI events, enabling
and disabling certain mappings depending upon the
message sent by the sequencer on a particular
channel. For example, MIDI channel 16 program
change messages could be used to change
performance phases. The composer would then
simply have to download the sequence into the Smart
Controller.

6 Other factors
Apart from factors relating directly to the Smart

Controller, issues such as the physical layout of the
bell stands, the bell striking mechanism, layout of
cable runs, microphones, and speakers are generally
outside the domain of the Smart Controller.
Consequently, these are not addressed in this paper.
There is, however, a possibility that the digital output
drive from the Smart Controller is insufficient due to
the distance of cable, in which case, line drivers can
be added within the rack mount unit. Other unforseen
factors, which cannot be addressed as they are
unknown, will be dealt with when they become
evident or when a fix is required. This feature is part
of very nature of iterative development (Larman
2002).

7 Conclusion
Although communication using telephone and

email make the implementation quite achievable, the
lack of substantial time blocks coupled with the
composer’s limited knowledge of electronics, the first
presentation of the Bell Garden will not contain all
the operations originally desired by the composer.
Nevertheless, despite the problems associated with
the collaborative process, the incremental nature of

the iterative method combined with the flexibility of
the Smart Controller will result in a successful
conclusion. Using the iterative method, the composer
was able to recognise at the midway point what
targets were achievable within the required
timeframe. Finally, the composer is now able to use
feedback from this realisation of the Bell Garden to
plan for Bell Garden 2.

References

Doornbusch, Paul. 2002. The application of mapping in
composition and design. In proceedings of Form,
space, time: the Australasian Computer Music
Conference. Royal Melbourne Institute of
Technology.

Infusion Systems. 1998. I-Cube System Manual. Last
accessed 5 March 2003.
http://www.infusionsystems.com/support/icubex-
111-manual.pdf.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. 1999.
The unified software development process.
Reading, Mass: Addison-Wesley.

Larman, Craig. 2002. Applying UML and patterns: an
introduction to object-oriented analysis and
design and the unified process. 2nd ed. Upper
Saddle River, NJ: Prentice Hall PTR.

MacCormack, Alan. 2001. "Product-development practices
that work: How Internet companies build
software." Mit Sloan Management Review 42
(2):75-84.

Norman, Anne. 2003a. Email to A. Fraietta, Electro-
acoustic Bell forest, 6 January 2003.

———. 2003b. Power Pole Bells. Anne Norman. Last
accessed 12 March 2003.
http://home.vicnet.net.au/~amncrow/PPBells.html
.

Petty, Bob. 1998. "Requirements Management Using
Tables." Embedded Systems Programming 11
(13):54-60.

Royce, Winston W. 1970. Managing the development of
large software systems. In proceedings of IEEE
WESCON.

